An Analysis of Rainwater from Rural Alaska Catchments: Findings and Recommendations for Healthy Utilization

Masters of Public Health Project Practicum

Elizabeth King, MPH Graduate Student
University of Alaska Anchorage

Co-Authors:
Dr. Elizabeth Hodges Snyder, PhD, MPH
Dr. Aaron Dotson, PhD, PE
Dr. Nancy Nix, MD, MPH&TM, MED, CHES

Funding Provided by: Clinical Translational Research Infrastructure Network (CTR-IN)
Background and Significance

• World Health Organization (WHO)
 – Household water security defined as access to 13.2 gp⁻¹d⁻¹

• Water Security in Alaska
 – Highest in U.S. for proportion of homes without in-home piped water
 • Increased risk of diseases
 – Pneumonia, MRSA, Respiratory-tract Infections, Skin Infections, and RSV

(ADEC, 2009; Brubaker, 2011; Hennessy et al., 2008; Thomas et al., 2013; Eichelberger, 2010).
Research Question & Objectives

• **Research Question**
 – What is the quality of water in rainwater catchments in rural Alaska?

• **Objectives:**
 – Sample & analyze rainwater from across the state
 – Document methods and materials employed to collect rainwater
 – Provide homeowners with the results of the testing on their water
 – Discuss possibilities for healthy utilization of rainwater based on findings
 – Discuss utilization and development of community sourced volunteer sampling
Research Methods

• Sampling Protocol Development
• Volunteer Recruitment
• Sample Collection
• Processing Rainwater samples
 – UAA Lab
 • E. coli
 – Professional Lab (SGS)
 • Conductivity
 • Metals Scan
 • pH
 • TOC
Method - Volunteers

• Volunteer recruitment method based on Adventurers & Scientists for Conservation

 – Develop cadre of professionals traveling to difficult to reach places interested in health and science
Methodology

- Pilot study, convenience sample
 - Volunteers were asked to approach homes with catchments
- Sample processing Considerations
 - What was needed to ensure quality?
 - Timeline – within 3 days of Collection
 - Maintain sample temperature (1°C - 10°C)
Sample Locations, Samples (N), and Volunteer Group

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Samples (N)</th>
<th>Volunteer /Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alakanuk</td>
<td>2</td>
<td>Bethel Public Health Nurses</td>
</tr>
<tr>
<td>Brevig Mission</td>
<td>3</td>
<td>RurAL CAP</td>
</tr>
<tr>
<td>Gambell</td>
<td>1</td>
<td>Friend of a Friend</td>
</tr>
<tr>
<td>Hoonah</td>
<td>1</td>
<td>RurAL CAP</td>
</tr>
<tr>
<td>Ketchikan</td>
<td>2</td>
<td>Engineers</td>
</tr>
<tr>
<td>Kipnuk</td>
<td>7</td>
<td>Bethel Public Health Nurses</td>
</tr>
<tr>
<td>Kivalina</td>
<td>2</td>
<td>ANTHC</td>
</tr>
<tr>
<td>Pilot Station</td>
<td>1</td>
<td>Yukon Intertribal Watershed Council</td>
</tr>
<tr>
<td>St. Mary’s</td>
<td>1</td>
<td>Yukon Intertribal Watershed Council</td>
</tr>
<tr>
<td>Tununak</td>
<td>1</td>
<td>Friend</td>
</tr>
</tbody>
</table>
Size of the Catchment Vessel (N=21)

- >1000 Gallons: 15, 71.4%
- <100 Gallons: 2, 9.5%
- 100-1000 Gallons: 2, 9.5%
- 5 Gallons: 2, 9.5%
Rainwater Catchment Pictures
Rainwater Catchment Pictures
Was the Catchment Vessel Open or Covered? (N=21)

- Open: 8, 38.1%
- Covered: 13, 61.9%

How Full was the Catchment Vessel? (N=21)

- Full: 1, 4.8%
- More than 1/2 full: 9, 42.9%
- About 1/2 full: 4, 19.0%
- Less than 1/2 full: 7, 33.3%
Rainwater Catchment Pictures
How Clean Did the Rainwater Look? (N=21)

- **No debris**: 13 observations
- **Visible leaves, insects, feathers, etc.**: 3 observations
- **Clear on top, sediment on the bottom**: 1 observation
- **Cloudy or turbid water**: 1 observation
- **Metal, bone**: 1 observation
- **Paint chips, aluminum, wood**: 1 observation
- **Slight sheen or fine particles**: 1 observation
Samples were tested for:

- Total Organic Carbon
- pH
- Conductivity
- Aluminum
- Antimony
- Arsenic
- Barium
- Beryllium
- Boron
- Cadmium
- Calcium
- Chromium
- Cobalt
- Copper
- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Molybdenum
- Nickel
- Potassium
- Selenium
- Silver
- Sodium
- Thallium
- Vanadium
- Zinc
- E-Coli
E-coli

• All of the 21 samples collected indicated the most probable number (MPN) for E-coli was 0. (6 of the 21 samples were within the time and temperature windows)

• Testing was conducted to ensure the result was accurate.
Metal Results $\mu g\ L^{-1}$

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Barium</th>
<th>Cadmium</th>
<th>Calcium</th>
<th>Copper</th>
<th>Lead</th>
<th>Magnesium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Potassium</th>
<th>Sodium</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCL</td>
<td>2000</td>
<td>5</td>
<td>No Limit</td>
<td>15</td>
<td>100,000</td>
<td>50</td>
<td>100</td>
<td>10,000</td>
<td>250,000*</td>
<td>secondary 5,000</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>2,780</td>
<td></td>
<td></td>
<td>1,020</td>
<td>5.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,880</td>
<td>179</td>
</tr>
<tr>
<td>1002</td>
<td>1,650</td>
<td></td>
<td></td>
<td></td>
<td>3.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,630</td>
<td>276</td>
</tr>
<tr>
<td>1003</td>
<td>580</td>
<td></td>
<td></td>
<td>4.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,110</td>
<td>2,460</td>
</tr>
<tr>
<td>1007</td>
<td></td>
<td></td>
<td></td>
<td>3.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008</td>
<td></td>
<td>15.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>621</td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td>10.50</td>
<td>1.27</td>
<td>27.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,440</td>
<td>3,720</td>
</tr>
<tr>
<td>1018</td>
<td></td>
<td>5.09</td>
<td></td>
<td>13.40</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,540</td>
<td>3,270</td>
</tr>
<tr>
<td>1019</td>
<td></td>
<td>2,150</td>
<td></td>
<td>15.30</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,820</td>
<td>5,140</td>
</tr>
<tr>
<td>1020</td>
<td></td>
<td>3.76</td>
<td></td>
<td>10.80</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,960</td>
<td>5,910</td>
</tr>
<tr>
<td>1021</td>
<td></td>
<td></td>
<td></td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,840</td>
<td>445</td>
</tr>
<tr>
<td>1022</td>
<td>41.80</td>
<td></td>
<td></td>
<td>50.30</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,680</td>
<td>54</td>
</tr>
<tr>
<td>1023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,490</td>
<td>47</td>
</tr>
<tr>
<td>1025</td>
<td>10.70</td>
<td>531</td>
<td></td>
<td>1.25</td>
<td>1,600</td>
<td>5.82</td>
<td></td>
<td></td>
<td></td>
<td>12,900</td>
<td>3,200</td>
</tr>
<tr>
<td>1026</td>
<td>6.02</td>
<td>555</td>
<td></td>
<td>1,490</td>
<td>3.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,800</td>
<td>83</td>
</tr>
<tr>
<td>1027</td>
<td>11.20</td>
<td>776</td>
<td></td>
<td>24.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,340</td>
<td>6,920</td>
</tr>
<tr>
<td>1028</td>
<td></td>
<td></td>
<td></td>
<td>5.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,840</td>
<td></td>
</tr>
<tr>
<td>1029</td>
<td>22.60</td>
<td></td>
<td></td>
<td>13.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,760</td>
<td>347</td>
</tr>
<tr>
<td>1031</td>
<td></td>
<td>1,710</td>
<td>15.60</td>
<td>4,690</td>
<td>5.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37,200</td>
<td>48</td>
</tr>
<tr>
<td>1032</td>
<td>4.70</td>
<td>3,280</td>
<td>605.00</td>
<td>3,440</td>
<td>17.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,040</td>
<td>28,300</td>
</tr>
<tr>
<td>1033</td>
<td></td>
<td></td>
<td></td>
<td>2.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>1038</td>
<td></td>
</tr>
</tbody>
</table>
Limitations

• Small sample size (N=21)
• One point in time sampling
• Potential seasonal variation
• Utilization patterns of collected rainwater
Recommendations

• Additional biological testing of rainwater catchments
• Develop a set of quality standards & recommended uses for non-potable water
• How does rainwater quality compare with other non-treated sources?
• Provide health-related education for rainwater utilization
• Proper storage and containment are key to maintaining high quality water
Thank you to all the volunteers!

• Ted Jacobson
• Anna Boyko
• Amy Modig
• Katy Krings
• Lisa Susunga
• Ju Lee
• Edda Mutter
• Danielle Stickman
• Monica Oakley
• Joe Fitzgerald

• Seth Brakke
• Paul Schuster
• Robert Taylor
• Paul Cascio
• Rachel Lord
• Korie Hickel
• Lance Whitwell
Questions?
References

http://www.who.int/water_sanitation_health/diseases/WSH03.02.pdf
